配合。列车监控系统采集列车行驶速度,同时将行驶速度传递给自动驾驶车载模块,通过车载模块对列车速度及位置的分析,对列车发出控制指令,从而实现列车的精确停车。列车在车站精确停车,便于在站台设置安全门等防护装置,从而为乘客提供安全的候车、乘车环境。Р2.3自动控制系统质量指标Р控制系统受到干扰后,被控量会产生信号波动。控制性能的优劣可以从控制系统输入与输出信号的比较中体现,一般从稳定性、快速性和准确性三个方面来衡量。控制系统中稳定性使系统能够正常工作,快速性决定被控量对控制量反应的快慢程度,准确性体现了系统被控量所能达到的控制精度。控制系统的这三个控制指标可以通过对控制系统中元件的选择以及参数的合理设置来实现,同时,三个性能指标是互相制约的。因此,在控制系统中,尤其是在无人自动地铁驾驶过程中,利用不同的系统达到不同的控制性能,可以有利于提升地铁的运行效率以及运行过程中舒适性及安全性。因此,自动控制系统参数对地铁全自动无人驾驶系统的运营有着重要意义。РРР3结语Р随着时代的不断发展,地铁无人驾驶技术的发展将越来越成熟,而自动控制技术对其发展有着积极的促进作用。通过自动控制系统的不同参数和元件的选择,地铁全自动驾驶技术可以更精准、安全、高效的运营,同时还可以提供更舒适的乘车环境。在未来,地铁驾驶的发展方向必定朝着智能化发展,同时,满足乘客的方便快捷乘车的需求。提高全自动列车驾驶系统中自动控制技术控制性能的最优化,依然是我们需要努力的方向。РР参考文献:Р[1]黄良骥,唐涛.地铁列车自动驾驶系统分析与设计[J].北方交通大学学报,2002.Р[2]胡寿松.自动控制原理[M].北京:国防工业出版社,1984.Р[3]肖衍,苏立勇.轨道交通全自动驾驶系统集成技术研究[J].中国铁路,2015(05):39-42.Р作者:张琪琪 程晓旭 高文秀 李淼 张路 曹轩铭 单位:北京交通职业技术学院