和后热。热处理时零件变形小,尺寸稳定。但合金元素含量高致使钢的成本增高。马氏体时效钢具有独特的优点,在较高的强度条件下使用安全可靠性好,固体火箭发动机壳体用18Ni马氏体时效钢,使用强度为1750MPa,浓缩铀离心分离机旋转简体用马氏体时效钢,使用强度达到2450MPa。二超高强度钢的力学性能(1)超高强度钢的断裂韧性表2·12·4列出了几种典型超高强度钢的强度和韧性。过去,随着使用强度不断提高,超高强度钢对缺口和裂纹的敏感性增大。70年代初,随着断裂力学的发展,断裂韧度已成为衡量超高强度钢韧性的重要指标。一般来说,钢的强度提高,往往断裂韧度降低。如200级18Ni马氏体时效钢,当加载到钢的屈服强度时,不发生脆性断裂的部件表面允许存在的临界裂纹尺寸为8mm。如果选用350级马氏体时效钢,当加载到屈服强度时,不发生脆性断裂允许存在的裂纹尺寸只有0.25mm。如此微小的裂纹用无损探伤的方法是很难发现的。因而就有发生低应力脆性破断的危险。只有提高钢的断裂韧度,增加部件中容许存在的临界裂纹尺寸,才能提高钢的使用应力,充分发挥材料的潜力。钢的断裂韧度取决于合金成分、组织结构和冶金质量。图2·12.l为几种超高强度钢的断裂韧度(KIc)与抗拉强度(σb)的对应关系。可以看出,材料的断裂韧度随抗拉强度升高而降低。在相同的强度水平时,马氏体时效钢的断裂韧度最高。不断提高超高强度钢的断裂韧度仍然是材料研究的一项重要任务。(2)超高强度钢的抗腐蚀性能在介质环境中外加负荷远低于材料的过载断裂应力时超高强度钢就会发生应力腐蚀滞后脆性断裂。超高强度钢在水介质中的应力腐蚀是氢致开裂过程,它受材料和环境中的氢所控制。裂纹前沿的氢离子得到电子后生成氢原子进入钢中。由于应力诱导扩散,氢原子向裂纹尖端最大三向应力处集聚,当富集的氢浓度达到某临界值时,材料就会发生滞后塑性变形,从而导致应力腐蚀裂纹的产生和扩展。