全文预览

圆的历史

上传者:随心@流浪 |  格式:doc  |  页数:1 |  大小:32KB

文档介绍
把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π(pai)表示。它是一个无限不循环小数(无理数),π=3.1415926535897……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。美索不达米亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多边形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π=3927/1250。刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。在1500年前, 祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,比欧洲大约早了1000年,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。现在有了电子计算机,圆周率已经算到了小数点后上亿亿位了。

收藏

分享

举报
下载此文档