在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律. 15.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第4幅图中有 30 个正方形.【分析】观察图形发现:第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…由此得出第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1)从而得到答案.【解答】解:∵第1幅图中有1个正方形,第2幅图中有1+4=5个正方形,第3幅图中有1+4+9=14个正方形,…∴第n幅图中有12+22+32+42+…+n2=n(n+1)(2n+1),∴第4幅图中有12+22+32+42=30个正方形.故答案为30.【点评】此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题. 16.如图,是用大小相等的小正方形按一定规律拼成的,则第10个图形是 120 个小正方形,第n个图形是(n2+2n) 个小正方形.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,再将n=10代入求得第10个图形中小正方形的个数.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n,第10个图形中小正方形的个数是:102+2×10=120;故答案为120,(n2+2n).【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.