EN (2, 0.00001) H1Р r2: IF E2 THEN (100, 0.0001) H1Р r3: IF E3 THEN (200, 0.001) H2Р r4: IF H1 THEN (50, 0.1) H2Р且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知:Р P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36Р请用主观Bayes方法求P(H2|S1, S2, S3)=?Р 解:(1) 由r1计算O(H1| S1)Р 先把H1的先验概率更新为在E1下的后验概率P(H1| E1)Р P(H1| E1)=(LS1 × P(H1)) / ((LS1-1) × P(H1)+1)Р =(2 × 0.091) / ((2 -1) × 0.091 +1)Р =0.16682Р 由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1)Р P(H1| S1) = P(H1) + ((P(H1| E1) – P(H1)) / (1 - P(E1))) × (P(E1| S1) – P(E1))Р = 0.091 + (0.16682 –0.091) / (1 – 0.6)) × (0.84 – 0.6)Р =0.091 + 0.18955 × 0.24 = 0.136492Р O(H1| S1) = P(H1| S1) / (1 - P(H1| S1)) = 0.15807Р (2) 由r2计算O(H1| S2)Р 先把H1的先验概率更新为在E2下的后验概率P(H1| E2)Р P(H1| E2)=(LS2 × P(H1)) / ((LS2-1) × P(H1)+1)