全文预览

人教版九年级下数学期中检测卷含答案

上传者:苏堤漫步 |  格式:doc  |  页数:8 |  大小:1143KB

文档介绍
题意知×3×|yc-(-4)|+×1×|yc-(-4)|=10,∴|yc+4|=5.(8分)当yc+4≥0时,yc+4=5,解得yc=1;当yc+4<0时,yc+4=-5,解得yc=-9,∴C点的坐标为(0,1)或(0,-9).(10分)Р24.解:(1)作AE,BF分别垂直于x轴,垂足为E,F,∴AE∥BF,∴△AOE∽△BOF,∴===.(2分)由点A在函数y=的图象上,设A的坐标是,∴==,==,∴OF=3m,BF=,即B的坐标是.(5分)又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=.(7分)Р(2)由(1)可知A,B,又已知过A作x轴的平行线交y=的图象于点C,∴C的纵坐标是.(9分)把y=代入y=得x=9m,∴C的坐标是,∴AC=9m-m=8m.∴S△ABCР=×8m×=8.(12分)Р25.(1)证明:∵四边形ABCD为正方形,∴AD=AB,∠DAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NDA+∠ANH=90°,∴∠NAH=∠NDA,∴△ABF≌△MAN,∴AF=MN.(4分)Р(2)解:①∵四边形ABCD为正方形,∴AD∥BF,∴∠ADE=∠FBE.∵∠AED=∠BEF,∴△EBF∽△EDA,∴=.∵四边形ABCD为正方形,∴AD=DC=CB=6cm,∴BD=6cm.∵点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为ts,∴BE=tcm,DE=(6-t)cm,∴=,∴y=.(8分)Р②∵四边形ABCD为正方形,∴∠MAN=∠FBA=90°.∵MN⊥AF,∴∠NAH+∠ANH=90°.∵∠NMA+∠ANH=90°,∴∠NAH=∠NMA.∴△ABF∽△MAN,∴=.∵BN=2AN,AB=6cm,∴AN=2cm.∴=,∴t=2,∴BF==3(cm).又∵BN=4cm,∴FN==5(cm).(12分)

收藏

分享

举报
下载此文档