的“制图六体”,从此地图制图有了标准和原则。在世界上,17世纪望远镜的发明和应用对测量技术的发展起到了很大的促进作用。1683年,法国进行了弧度测量,证明了地球是两极略扁的椭球体。1794年德国高斯提出了最小二乘法原理,以后又提出了横圆柱投影学说,对测量学的发展做出了很大贡献。1903年飞机的发明对航空摄影测量的发展起到了决定性作用,并大大减小了测量的劳动强度。二十世纪以来,电子计算机的出现,不仅加快了计算速度,并且改变了测绘仪器和方法。特别是1957年人造地球卫星的发射,促使测绘工作有了新的飞跃,开辟了卫星大地测量学这一新领域。多普勒定位是空间技术用于大地测量并得到普遍应用的一种先进技术。到了70年代,又出现了全球定位系统(GPS),用它进行精密控制测量能达到厘米级精度。人们利用遥感、遥测技术获得丰富的图像信息,编制大区域的小比例尺影像地图和专题地图。同时还出现了惯性测量系统和长基线干涉测量,前者是根据惯性原理设计的测定地面点大地元素的装置,后者是一种独立站射电干涉测量技术,用来测定相距很远地面点的相对位置。1.4工程测量仪器的发展工程测量仪器可分通用仪器和专用仪器。通用仪器中常规的光学经纬仪、光学水准仪和电磁波测距仪将逐渐被电子全测仪、电子水准仪所替代。电脑型全站仪配合丰富的软件,向全能型和智能化方向发展。带电动马达驱动和程序控制的全站仪结合激光、D技术,可实现测量的全自动化,被称作测量机器人。测量机器人可自动寻找并精确照准目标,在1s内完成一目标点的观测,像机器人一样对成百上千个目标作持续和重复观测,可广泛用于变形监测和施工测量。GPS接收机已逐渐成为一种通用的定位仪器在工程测量中得到广泛应用。将GPS接收机与电子全站仪或测量机器人连接在一起,称超全站仪或超测量机器人。它将GPS的实时动态定位技术与全站仪灵活的3维极坐标测量技术完美结合,可实现无控制网的各种工程测量。