全文预览

图论法用于供水管网水力计算的研究

上传者:非学无以广才 |  格式:doc  |  页数:17 |  大小:28KB

文档介绍
示流向相反,“0”表示该管段不在此割集内。式(5)的割阵Af和割集K一一对应。割阵Af可用一个矩阵A和一个单位阵U表示为:Af=[U|A],其中A=[1-1]-1101割阵与流量列向量可构成割方程。根据图论理论,割阵的行向量与环阵的行向量正交,这种关系可用式(6)表示。[B|U]·[U|A]T=0或者[U|A]·[B|U]T=0(6)所以有B=-AT或者A=-BT。这样,环阵可以由割阵求出,反之亦然。关联矩阵通过选主元初等行变换即可得到割阵:先选关联阵第一行中一非零枝元素为主元,并使其为+1,消去其它各行中此主元;再选第二行、第三行、…的主元,最后即得割阵Af。因此,可以由关联矩阵导出割阵和环阵。2图论法模型任何管道的水力计算都可以用管段流量q\,水头损失h\,管径D\,管长L和管壁条件C等5个因素来描述。一般D、L和C为已知条件,只有q和h未知。因此,求解一个管网的水力平衡问题,可从两方面考虑:一是利用q和h的关系,消去h,以q为未知量计算,求出q后,反求h;二是首先消去q,以h为未知量计算;解出h之后,再反求。图论法也可从这两方面入手,即求弦流量式和求枝摩损式。前者只适用于环状网,而后者则适用于所有类型的管网,所以本文着重介绍后者。设一管网有J个节点,P条管段,L个环,则三者满足L=P-J+1的关系。管网的每一管段都有q和h两个未知量,因而未知量的个数为2P。但管网环方程有L个,线性无关的连续性方程有J-1个,总数为L+J-1=P个,不能求解2P个未知量[1]。因此,必须借助P个管段摩损方程式。管段摩损方程式线性化后的通式如(7)和(8)所示。系数R称为阻尼系数,Y称为传导系数。R和Y的具体形式与所选用的摩损公式有关,是D、C、L的函数。摩损公式线性化后,R还是q的函数,Y还是h的函数。不过,在求解过程中,总是把R和Y当作已知量来对待。阻尼式:h=R×q(7) 传导式:

收藏

分享

举报
下载此文档