:水草→甲→丁。(2)图1中属于次级消费者的是丙、丁;丁与丙都捕食乙,同时丁还捕食丙,因此丁与丙之间存在捕食和竞争关系。(3)图2中乙固定的能量除了流向丁和分解者外,还应该包括流向丙和自身呼吸作用以热能形式散失的能量。(4)结合图1和图2分析,第一营养级的生物固定的能量是25000kJ/(m2·a);第二营养级的生物是甲、乙,固定的能量应该多于1900kJ/(m2·a),因此第一营养级到第二营养级能量的传递效率应该大于1900÷25000,即大于7.6%。(5)因为水体中含有某种可被生物富集的农药,所以营养级越高的生物该农药的含量越高,即丁的农药含量最高。(6)由于河流生态系统自我调节(自我修复)能力是有限的,因此污染物排放容易导致水质恶化。4.(1)恢复力(2)基质 360 消费者分解者(3)大于不能解析:(1)西黄松群落被砍伐遭到破坏后,又逐渐形成自然幼龄群落,体现了生态系统的恢复力稳定性。(2)光合作用的暗反应过程进行二氧化碳的固定,因此大气中的碳主要在叶绿体基质部位被固定,进入生物群落。用于生产者当年的生长、发育、繁殖,储存在生产者活生物量=生产者的固定的量-生产者呼吸消耗量=净初级生产力,因此幼龄西黄松群落每平方米360克碳用于生产者当年的生长、发育、繁殖,储存在生产者活生物量中。用于生产者当年的生长、发育、繁殖的生物量一部分流入消费者,通过消费者的呼吸作用释放,一部分转变为死有机质和土壤有机碳,进而通过分解者的分解作用,返回大气中的CO2库。(3)西黄松幼龄群落中和老龄群落中每克生产者活生物量的净初级生产力分别为360/1460≈0.25和470/12730≈0.04,因此西黄松幼龄群落中每克生产者活生物量的净初级生产力大于老龄群落。根据年碳收支分析,该生态系统中幼龄西黄松群落的净初级生产力360,而异氧呼吸消耗量为390,因此幼龄西黄松群落不能降低大气碳总量。