时滞的影响,但是在实际应用中却不尽人意,主要原因在于:Smith预估器需要确知被控对象的精确数学模型,当估计模型和实际对象有误差时,控制品质就会严重恶化,因而影响了Smith预估器在实际应用中的控制性能[6]。于是在Smith预估器的基础上,许多学者提出了扩展型的或者改进型的方案,这些方案包括:多变量Smith预估控制,非线性系统的Smith预估器,改进的Smith预估器,自适应的Smith预估控制器。Р大林算法是由美国IBM公司的Dahlin于1968年针对工业过程控制中的纯滞后特性而提出的一种控制算法。该算法的目标是设计一个合适的数字调节器D(z),使整个系统的闭环传递函数相当于一个带有纯滞后的一阶惯性环节,而且要求闭环系统的纯滞后时间等于被控对象的纯滞后时间[3]。大林算法方法比较简单,只要能设计出合适的且可以物理实现的数字调节器D(z),就能够有效地克服纯滞后的不利影响,因而在工业生产中得到了广泛应用。但它的缺点是设计中存在振铃现象,且与Smith算法一样,需要一个准确的过程数字模型,当模型误差较大时,控制质量将大大恶化,甚至系统会变得不稳定。Р1.2.2智能控制Р智能控制是一类无需人的干预就能够独立地驱动智能机器实现其目标的自动控制,它包括模糊控制、神经网络控制、遗传算法等[7]。Р模糊控制是智能控制较早的形式,它吸取了人的思维具有模糊性的特点,从广义上讲,模糊逻辑控制指的是应用模糊集合理论,统筹考虑系统的一种控制方式,模糊控制不需要精确的数学模型,是解决不确定性系统控制的一种有效途径。模糊控制是一种基于专家规则的控制方法。在时滞过程中,模糊控制一般是针对误差和误差变化率而进行的,将输入量的精确值模糊化,根据输入变量和模糊规则,按照模糊推理合成规则计算控制量,再将它清晰化,得到精确输出控制过程,其中模糊规则是最重要的。但是,模糊控制存在控制精度不高、算法复杂等缺点