GSH、NADPH)的含量显著高于相应的癌旁组织,提示肿瘤细胞中确有GSH的高表达[3]。Р随着分子生物学和医学影像学的飞速发展,近年来产生了一门新兴的交叉学科--分子影像学。分子影像学是指运用影像学的手段,在组织、细胞和亚细胞水平显示活体状态下某些特定分子的变化,对生物学行为进行定性和定量的研究,为疾病过程在体监测、基因治疗、在体示踪、药物在体疗效评测和功能分子在体活动规律研究提供新技术。分子影像学在疾病早期诊断、提供疾病发展重要信息和评价治疗效果方面具有诱人的潜能,具有无创、实时、在体、特异、精细显像等优点[4-6]。所以,分子影像技术可望为疾病的研究和临床“早早期”诊断、治疗提供基因分子水平信息,而在分子影像学成像技术中,靶向性和高亲和性分子探针的制备起着关键作用[7-8]。Р磁共振成像是利用生物体不同组织在磁共振过程中产生的具有不同特征的电磁波信号成像技术,是上世纪80年代以来医学影像学发展的最新成就之—[9-10]。磁共振成像技术也因为其无创伤性、无辐射损伤、非侵入性、并具有多序列、多参数(不同组织与磁共振有关的特征参数如质子密度、纵向弛豫时间、横向弛豫时间、弥散系数等都可以作为成像参数)、任意平面成像、较高的密度分辨率等优点[11]广泛的应用于临床,已经成为临床诊断中最常用的影像检查手段之一[12]。但是随着医学技术的飞速的发展和人们生活水平的日益提高,常规的磁共振检查已经不能满足临床诊断的要求,人们对磁共振成像的特异性、精确性、敏感性提出了更高的要求。为了实现对微小病变及隐匿病变的早发现、早诊断、早治疗,学者纷纷投入到提高疾病诊断准确性的成像方法的研究。虽然单一的磁共振成像设备已经对脂肪、软组织等低密度组织具有的成像效果,但它仍然不可以实现对全身任意组织的扫描成像并提供有诊断价值的图像。通过磁共振和其他成像设备的结合(例如磁共振和PET的结合形成PETMRI)