不会超过电源电压,四个能量恢复二极管能消除一部分由漏感产生的瞬间电压。这样无须设置能量恢复绕组,反激能量便得到恢复利用。当然,全桥变换器需要功率元件较多。在导通的回路上,至少有两个管压降,因此功率损耗也比双晶体管推挽式变换器1 倍。但是在高压离线开关电源系统中,这些损耗还是可接受的。另外,能量恢复(再生)方式,由于有四个二极管,损耗略有增加。Р3.2.2全桥功率变换器控制方式Р全桥变换器本质上有三种基本的控制方式:双极性控制、有限双极性控制和移相控制。双极性控制方式控制电路简单,技术成熟,但开关器件通常工作在硬开关状态,开关管的电流和电压尖峰很高,需要很大的安全工作区;移相控制方式是国内外电源界研究的热门课题,但尚存在不足;有限双极性控制方式具有更多的优越性,是中、大功率应用场合的理想控制方式。本次设计选用有限双极性控制方式。Р3.3控制电路设计Р控制电路的核心是根据反馈控制原理,将期望输出电压信号与实际输出电压信号进行比较,利用误差信号对功率开关器件的导通与关断比例进行调节,从而实现实际输出电压维持在期望输出电压附近的目标。本课题选用SG3525芯片做集成控制器。Р3.3.1 SG3525结构和功能介绍РPWM控制芯片SG3525 具体的引脚图及内部结构如图3.3及图3.4所示。其中脚16为SG352的基准电压源输出,精度可以达到(5.1±1%)V,采用了温度补偿,而且设有过流保护电路。脚5、脚6、脚7 内有一个双门限比较器,内设电容充放电电路,加上外接的电阻电容电路共同构成SG3525 的振荡器。振荡器还设有外同步输入端(脚3)。脚1及脚2分别为芯片内部误差放大器的反相输入端、同相输入端。该放大器是一个两级差分放大器,直流开环增益为70dB左右。根据系统的动态、静态特性要求,在误差放大器的输出脚9和脚1之间一般要添加适当的反馈补偿网络。Р Р图3.3 SG3525引脚图